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is obtained from the basic In  prin- 
ciple the analysis could be extended to stronger 
turbulence by considering more points in the fluid 
as in reference 9. 

One of the important problems in magneto-fluid 
dynamic turbulence is the ultimate partition of 
turbulent energy between the mechanical and mag- 
netic modes. Some authors have argued that there 

' ' INTRODUCTION 

URBULENCE in conducting fluids in the T presence of magnetic fields has received con- 
siderable attention in recent ~ e a r s . l - ~  Most of the 
interest in t.his type of turbulence stems from its 
importance in certain astrophysical and geophysical 
applications. Phenomena such as sunspots, cosmic 
rays, and the geomagnetic field appear to be re- 
lated, respectively, to turbulence in the Sun, inter- . stellar space, and the Earth's core. Some of the 
astro- and geophysical aspects of magneto-fluid dy- 
namic turbulence are discussed in the book by 
Cowling .6 

In  the present study we try to gain some under- 
standing of magneto-fluid dynamic turbulence by 
considering an  idealized model for which a solution 
can be obtained. A uniform magnetic field is im- 
posed on a field of homogeneous turbulence in a 
conducting fluid. Such a field of turbulence will 
decay with time, so that it is necessary to produce 
it initially by some means, for instance, by passing 
the fluid through a grid. Although turbulent fluctua- 
tions in the magnetic field are initially absent in 
such a system, it will be seen that they can arise 
at later times because of the interaction of the 
turbulent velocity field with the imposed mean 
magnetic field. A two point analysis of the turbulent 
fields will be carried out. In  order to make the prob- 
lem determinate, it is assumed that the turbulence 
is weak enough for triple correlations to be negligible. 
In  this way deductive information on turbulence 

1 G. K. Batchelor, Proc. Roy. SOC. (London) A201, 406 

S. Chandrasekhar, Proc. Roy. SOC. (London) A204, 435 
(1950). 

(1951). 
a T. Tatsumi, Rev. Mod. Phys. 32, 807 (1960). 
4 L. S. G. Kovasznay, Rev. Mod. Phys. 32, 815 (1960). 
6 T. G. Cowling, Magnetohydrodynamics (Interscience Pub- 

lishers, Inc., New York, 1957). 

- 
should be an approximate equipartition of energy 
between the two modes, whereas others have indi- 
cated that the turbulent magnetic and vorticity 
fields should be similar. A summary of the arguments 
for and against each point of view is given in 
reference 5 .  It is hoped that the present study mill 
give some insight into this problem. It will be seen 
that, a t  least for the model considered here, the 
turbulent energy tends ultimately to be distributed 
equally between the mechanical and magnetic 
modes. 

BASIC EQUATIONS 

It is assumed that the dynamics of the conducting 
fluid are described by the following equat,ions: 
Navier-Stokes equation: 

(1) 
1 -  1 &! = -- v p  + vv2u + - j x b ,  

P P Dt 

Continuity equation: 

v-u = 0, 
Maxwell's equations: 

j = p o ' v x b ,  (3) 

v-b = 0 ,  (4) 
6 R. G. Deissler, Phys. Fluids 4, 1187 (1961). 
7 R. G. Deissler, J. Geophys. Res. 67, 3049 (1962). 
* R. G. Deissler, Intern. J. Heat Mass Transfer 6, 257 

9 R. C. Deissler, Phys. Fluids 3, 176 (1960). 
(1963). 
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V X E  = -&/at ,  (5) 

Ohm’s law: 

j = u(E + u x b  - c,’n,’j xb), (6) 

where D signifies a substantial derivative, u the 
instantaneous velocity, t the time, p the density, 
p the instantaneous pressure, j the instantaneous 
electrical current, b the instantaneous magnetic field, 

the permeability of free space, E the instantaneous 
electrical field, u the electrical conductivity, e, the 
charge on an electron, and ne the number density 
of electrons. mks units are used throughout. The 
fluid properties are assumed constant in Eqs. (1) 
and (G),  and the usual magneto-fluid dynamic ap- 
proximations are made in hlaxwll’s equations. The 
last term in Eq. (6) is, of course, the Hall current; 
that current arises because of the force V x b  which 
acts on the electron gas as it moves through the 
fluid with the relative velocity V. The velocity V 
is related to j by the equation j = -n,e,V. 

Taking the curl of E:q. ( G ) ,  and using (3), (4), 
and (5) results in 

1 ab - V X ( V X b )  = - u - +  U V X ( U X b )  
PO at 

- (ecn,po)-’V x [(v xb) xb]. (7) 

With the usc of the vector identities 

v X(V xu) = V ( V 4  - v - v u ,  

(V xu) x u  = ( U ’ V ) U  - &Vu2, 

v x(uxv)  = v - v u  - u * v v  + U ( V . V )  - V ( V * U ) ,  

v x(Vu) = 0 ,  

and Eqs. (2) and (4), Eq. (7) becomes 

- (e,n,poa)-’V x [(b.V)bl. (8) 

In component form this equation can be written as 

where e i i b  has the value 0 when i, j ,  and k are not 
all different. When the subscripts are all different, 
e i i k  has the value +1 when they are in cyclic order, 
and -1 when they are in acyclic order. The sub- 
scripts in Eq. (9) can take on the values 1, 2, or 3, 
and a repeated subscript in a term indicates a sum- 

mation of terms, with the subscript successively 
taking on the values 1, 2, and 3. 

The term j x b  in Eq. (1) can be written as 

1 1 j x b  = - (V xb) x b  = - ( 6 . ~ 5  - 4 ~ 6 ’ ) .  

Equation (1) then becomes, when written in corn- 
ponent form, 

P O  Pn 

Inasmuch as we will be coilsidering a steady mean 
magnetic field, as well as a fluctuating field, we write 
the instantaneous field as 

(11) 6 ,  = b, + B,  
where b,  is the fluctuating component and B ,  is 
the steady mean component of the magnetic field. 
Then Eq. (10) becomes 

_ -  aut a(uJh) - 1 aP 
at a x k  p a x ,  ax, ax, 

- 

The average value of Eq. (12) is 

where the overbars indicate average values. Sub- 
tracting Eq. (13) from Eq. (la), 
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Equations (14) and (15) are the equations for the 

I n  order to construct two point correlation equa- 
tions, those equations are also writt,en a t  another 
point, say P': 

l a - -  + -BB, - (uibi -,b&) velocity and magnet,ic field at a point P in the fluid. POP ark 

1 1 -  + (bkbku: + 2b,u:B,) 

- An ~.. eqi~rtt~ion for t,he correlation between the ve- 
locity and the magnetic field is obtained by multi- 
plying Eq. (14) by b:, Eq. (17) by ui, and performing 
operations similar to those used in obtaining Eq. (iuj .  
This gives 

(bLb: - b:b: + 2bLB3, (16) 
i a  

2pOp ax; 

ab! 2 = 3- ( !bf - + u:BL - bju: at ax: u, 

Two-Point Correlation Equations 1 a 2 a  + (V + -) - 
If we multiply Eq. (14) by u: and Eq. (16) by ui, upo  ark ark 

a2 __ 
(u,b:b: + ab:Bk + uib:B,). and add the two equations, and take average values, 

we obtain arm ar, - (ecn&OU)-'efmk - 
(20) 

Similarly, from Eqs. (15) and (16), 

a (b,b,u:-+2b,u:Hk) 2pop axi 

a bp '  1 -__- 1 -- 
ari P 2PoP POP 

- - (A + - b,b:b: + - bibLBk) 

- __-- *(b,bZ + b,.rs:Bk + b,u:B,j. (21) 
(18) 

1 a -  , (uib:b: + 2 Z B : ) .  
The equation for the two point magnetic field cor- 
relation is obtained from Eqs- (15) and (17) as 

a 7 -- 
- - (b,Ukbl - biuib:) f - (b,u;b, - uibkbj) 7 - 

2PoP axi 

In  obtaining this equation, use was made of the fact 
that quantities at one point are independent of the am 
position of the other point. Introducing the variable 
ri = x: - x i  gives, for homogeneous turbulence 

a 
ark 

a 7  - 2 a2bib: 
- ark  UP^ ark ark 

and a uniform mean magnetic field, + Bk - (b,u; - uib:) + - - 
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By an argument similar to that given in ~ reference _- 10, 
it can be shown that the term (a lar , )  ( b , u k b :  - 6,uLb:) 
in the last equation is zero for r = 0. Thus, that 
term can be intcrpretcd as the Fouricr transform 
of a term which transfers magnetic energy between 
eddies of various sizes. 

The pressure and magnetic prtssure terms in 
Eqs. (19) to (21), that is, terms containing a l a r ,  
or a/&,, can be interpreted as transferring energy 
(or correlation) between the directional components. 
The argument is similar to that given in reference 10. 
Other terms in the preceding correlation equdtions, 
or their Fourier transforms will be interpreted later 
in the paper. 

To obtain equations for the pressure and magnetic- 
pressure terms, take the divergence of Eqs. (14) 
and (16) and apply continuity. Then Eq. (14), for 
instance, becomes 

0 == -~ 
__ 

a'(utu!,) I d 2 u t l ( k  1 a'p 
as, ax, d z k  ax, ax, axt 

a2(b ilk) a ' ( b , ~ , ) ]  +A+----_ axk as, ax, an, 

(23) 

Multiplying this equation by u;, averaging, and 
introducing the variable r results in 

By taking the Fourier transform of this equation, 
it is easy to see that the quantity in brackets will 
be zero if the triple correlations are neglected. [See 
for instance Eq. (14), reference 9.1 Similarly all of 
the other pressure and magnetic-pressure terms in 
Eqs. (19) to (21) will be zero if the triple correlations 
are neglected. Thus neglecting triple correlations and 
assuming that the mean magnetic field is in the 
direction B,, the set of Eqs. (19) to (22)  becomes 

10 G .  K .  Bntchelor, The Theory o,f Homogeneous Turbulence 
(Cambridge University Press. New York, 1953), p. 87. 

Spectral Equations 

In  order to convert Eqs. (25) to (28) to spectral 
form, define thc following three-dimensional Fourier 
transforms: 

_- 
ti,& = ll (p,,ei"" du, (29) 

J-CC 

J-CC 

By using these relations, the b'ouricr transforms of 
Eqs. ( 2 5 )  to (28) are obtained as 

2 K 2  

at UP0 

~- - R3iK3(& - p;;) - - pi ,  api i 

+ (ecneC(~U))-'B3(E,,3KrnKipi, + E , m k K r n K B P k i  

+ E f r n 3 K r n K ~ P t 1  + e i r n k K m K 3 P i k ) -  (36) 

As they stand, most of the 36 equations represented 
by (33) to (36) are interrelated. The solution could 
be carried out numerically if it appears to be im- 
portant to do so. However, if the Hall current terms 
are neglected (large ne or u), a considerable simpli- 
fication is obtained, inasmuch as it is then only 
necessary to solve three equations simultaneously. 
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The Hall currents are negligihle for a liquid metal, 
although they may not be for a rarified plasma. It 
appears that the results will still be useful for giving 
an insiglit into some of the physical processes occur- 
ring in this type of turbulence. 

If we neglect Hall currents and compare Eqs. (34) 
and ( 3 5 ) ,  we find that the relation /3:: = -b:,  
holds for all times if it is true at  an initial time. 
Here it mill be assumed that the niagrietic field 
fluctuations are initially zero, SO that the above 
relation will hold. Thus. the set of Eqs. (33) to (36) 
becomes 

d (L) = y K 3 / 3 : , )  2 V K 2  (L). (SI)) 
at POP POP UPov PnP - 

, 

In  these equations p t l  is a spectrum tensor for tur- 
bulent velocity energy and / 3 , , / ( p o p )  is a correspond- 
ing tensor for turbulent magnetic energy. The term 
i2BzK,/3(, / ( / . tnp) occurs in both Eqs. (37) and (39), 
but with opposite signs. Thus it can be interpreted 
as an interchange term which transfers turbulent 
energy between the mechanical and magnetic modes. 

Solution of Spectral Equations 

A geiieral solution of Eqs. (37) to (39) is 

(42) 

where 

and (C,),,, ( C , ) , , ,  and (C3)!, are coilstants of inte- 
gration. 

we use the conditions that the turbulence is iiiitially 
isotropic and that and $:, are initially zero. 
The last two conditions correspond to the assumption 
that the magnetic ficld fluctuations are zero at 
t = to. Thc inleractioii of the mean magnetic field 
aiid the velocity fluctuations mill then cause mag- 
netic field fluctuations to arise a t  later times, and, 
in addition, will cause the turbulencc to become 
anisotropic. The assumption that the turbulciice is 
initially isotropic means that, for weak turbulence, 

or&y t o  cva!::at:. the c ~ : i ~ t ~ ! ? t c  of iiltegra.tinii, 

((P~,)" = ( J , / l ~ ~ * ) ( t . ~ 6 ~ ~  - K , K ~ )  ( 4 4  

as given by E l .  (43) in reference 6. The quantity 
Jo is a coiistant that depends on initial conditions 
and 6, ,  is the Kronecker delta. lpor the foregoing 
initial conditions, the constants of integration are 

(45) 

and 

When s, as given by Eq. (43), becomes imaginary 
the following solution can be used: 

q,, = { ( C L  + (a,, cos [s'(l - t o l l  + (C3,; 

.sin [s'(i - io)]] exp [ -(L + v ) K ' ( ~  - t ; ] ,  (48) 
UP0 
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~ 

where 

K i K j  

and 

The foregoing spectral quantities are functions 
of the components of K as well as of its magnitude. 
In  order to obtain quantities that are functions only 
of the magnitude K we integrate over all directions 
in wavenumber space. Thus, as suggested by 
Batchelor, we define the quantity J.ii by the equation 

+i i (K)  = S," p i i ( K )  ~A(K)  (55) 

where A is the area of a sphere of radius K.  Letting 
T = 0 in Eq. (29) shows that 

Thus $ii  dK gives the contribution from wave num- 
ber band dK to G, and a plot of J.ii against K shows 
how contributions to are distributed among 
the various wave numbers or eddy sizes. 

Equations (40) to (54) can be written in spherical 
coordinates by setting 

K~ = K coscpsin 0, K~ = Ksincpsin e, K~ = K co8 e. (57) 

Then Eq. (55) becomes 
n T  - 2 s  

J . i i ( ~ )  = J pii(~, 9, 0)K" sin 0 dcp de. (58) 
o n  

The component cp33 and (aii are independent of the 
angle p. Thus Eq. (58) becomes, for fiii, 

J. i i  = 47r~' cpii d(cos e). (59) 
0 

Spectrum functions corresponding respectively to 
pii, and to the interchange term in Eqs. (37) and 
(39), are 

Q i i  = 4n~' S,' pii d(cos e),  (60) - 
and 

Similar expressions are used to calculate $33 and 
Q33. Computed spectra of the various turbulent quan- 
tities will be considered in the next section. For 
making the calculations, the indicated integrations 
in Eqs. (59), (60), and (61) were carried out nu- 
merically. 

RESULTS AND DISCUSSION 

Figure 1 shows dimensionless spectra of the energy 
contained in the turbulent velocity field (spectra of 
3G). Curves are shown for values of upov of lo-', 
0.5, and 2. The low value of upov corresponds, in 
order of magnitude, to liquid metals, whereas the 
higher values may approximate those for certain 
rarefied astrophysical plasmas. 

When plotted with the similarity variables used 
in Fig. 1, the spectrum for no magnetic effects 
(B*, = 0) does not change with time, so that com- 
parison of the various curves indicates how magnetic 
forces will alter the spectrum. In all cases the curves 
for B*, # 0 lie below those for B: = 0, thus illus- 
trating the stabilizing effect of the magnetic field. 
For the two lower values of upov, the areas under 

1 
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(a) !h! ( I? )  

FIQ. 1. Dimensionless spectra of energy in turbulent velocity field, t u x  (a) up0v = 10-7. (b) U ~ O V  = 0.5. (c) mfi0v = 2.0. i 

the curves decrease as B: increases. However, for 
apov = 2, a minimum is indicated, and further in- 
creases in B*, cause a relative increase in turbulent 
velocity energy. These effects are shown more clearly 
in Fig. 2 where values of uiui/(u,ui>~ and u3u3/(u3u3)0 
are plotted against B:. The subscript 0 is for B*, = 0. 
The ordinates were obtained from the areas under 
spectrum curves such as those in Fig. 1 and similar 
curves for IC.33. For high values of B*, the velocity 
fluctuations for apov = 2 are nearly as strong as 
those for B*, = 0, although the spectra differ. For 
ap0v < 1, the velocity fluctuations decrease and 
approach zero for large values of B*,, the rate of 
approach to zero being much greater for the lower 
value of apov. 

This damping of the velocity fluctuations seems 
to be related to the darkness of sunspots, as dis- 
cussed by Cowling (reference 5 ) .  The magnetic field 
in the sunspot apparently reduces the turbulence 
in that region, and thus reduces the convective heat 
transport to the surface. Thus the surface appears 
dark. Inasmuch as upov is less than 1 for the Sun, 
Fig. 2 indicates that  this damping of the turbulence 

-- -- 

. 

0;- l t -1011J2B, l lp~  p I ” 2  

_ _  --- d / l ” Z I  a 1 0  

should take place if the mean magnetic field in the 
sunspot is sufficiently large. 

The energy in the turbulent magnetic field will 
be considered next. Dimensionless spectra of fb,b, 
are plotted in Fig. 3, where it is seen that the trends 
for small B*, are opposite to those for the turbulent 
velocity field shown in Fig. 1. As B: increases, the 
turbulent, magnetic energy, in general, increases 
relative to the turbulent velocity energy for no 
magnetic field. (The comparison is made relative 
to the velocity energy for B*, = 0 since the turbulent 
magnetic energy is zero for B: = 0.) For larger 
values of 23: the variation is more complex. However, 
it appears that for all values of B*,, turbulent energy 
is being transferred between the mechanical mode 
and the magnetic mode by the interchange term 
in Eqs. (37) and (39). 

The integrat,ed interchange term as calculated by 
Eq. (61) is plotted in Fig. 4. That term is predomi- 
nantly positive for apov < 1, and thus indicates, 
that turbulent energy is being transferred from the 
mechanical to the magnetic mode. For cpov = 2 
and low values of B*, (not shown) the interchange 
term is also predominantly positive. However, for 
B*, = 16 [Fig. 4(c)], Iii is predominantly negative. 
That is, for upov > 1, energy is transferred from the 
magnetic to the mechanical mode a t  high values 
of B:. Energy can apparently be transferred from 
the velocity to the fluctuating magnetic mode be- 
cause the magnetic lines of force in the mean im- 
posed magnetic field tend to follow the fluid motions, 
at least a t  high values of conductivity or of upov. 
(The turbulent velocity fluctuations tend to scramble 

I I 1  1 1 I I I I I the magnetic lines of force.‘) If, on the other hand, 
0 . 2 4 6 8 10 12 14 16 I0 20 

a;- i t . t~i”%,~i, ,~ ,vlvz the fluctuating magnetic energy happens to be very 
large, the tension in the lincs of force tends to 
straighten them out and reduces the fluctuating 

FIG. 2. Ratio of mean turbulent velocity fluctuations to those 
for no magnetic field. 
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niagnetic energy. Thus energy can be transferred 
in both directions. 

Some of the curvcs in Figs. 4(b) a i d  (e) exhibit 
multiple peaks and valleys, the effect being par- 
tiridarly pronounced for apov = 2 and I<*, = 16. 
For that case, Fig. 4(c) indicates that the energy 
transfer can be in one direction at  a given wave 
number and in the opposite direction a t  a slightly 
different wave number. A similar curve was ob- 
tained for up0v = 0.5 and B*, = l(i, but the curve 
in that ease was predominantly positive, rather than 
negative. Because of the interaction of 1Cqs. (37) 
to (30), some of the curves in Figs. 1 and 3 also 
have a wavy appearance. I n  all cases the number 
of peaks increases as B*, increases. In thc curve 
in I+'ig. l(b) for apov = 0.5 and B*, = 128, there arc 
actually a large nuni1,er of very small peaks, but 
they are too small to show up in the plot. The 
quantity B*, is proportional to ( t  - to) ' ,  so that a? 

time iiicreases, for a fixed B,, the number of peaks 
in the spectrum curvcs will increase. 

A necessary condition for the developmeiit of 
multiple peaks seems to be that the energy in the 
mechanical and magnetic modes be of the same 
order of magnitude. Thus the effect does not o c ( w  
for apOv = lo-', or for other values of ap0v when 135 
is small, inasmuch as the energy in the rnagiictk 
mode is much less than that in the mechanical mode 
for those cases. The second term in Eq. (38) is 
proportional to the difference between the mechanical 
and magnetic eiiergy at a particular value of K. 

It seems reasonable that the waviness observed in 
the spectra should develop when the two quantities 
are of the same order of magnitiide. 

Comparison of Figs. l (a)  and 3(a) indicates that 
negligible energy is contained in the magnetic mode 
for upov = This occurs in spite of the fact 
that the interchange terms for upov = and for 

* 

. 
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Fro. 4. Dimensionless interchange term for transfer of energy between mechanical and magnetic modes. (a) u ~ o v  = IO-'. 
( h )  U ~ O V  0.5. (c) upav E 2.0. 
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0.5 are of the same order of magiiitude [see Figs. 
4(a) and (b)]. Comparison of the interchange term 
and electrical dissipation terms in Eq. (39) shows 
that they are very nearly equal. Thus, for ap,,v= 

nearly all the energy that is transferred out of the 
mechanical mode is dissipated immediately by elec- 
trical resistance. The energy dissipated by electrical 
resistance is of the bailie order of magnitude as that 
dissipated by viscous action for all three values of 
ap,,v, as can be seen by comparison of Figs. 1 and 3 
and the dissipation terms in Eqs. (37) and (39). 

energy I o  that for niecliariical energy (integrated 
over all directions) is the same as the ratio of an 
ordinate on Fig. 3 to a corresponding ordinate on 
Fig. 1 divided by upov. 

111V l d l l C J  V I  lllt; UlL3olpc%LlUll ~tsiiii iui -n---e4'n 1iiaf;i icLib 
TI> ..-A: - E  LL.- A:--:-,.LL.- 

D E I S S L E R  

Partition of Turbulent Energy Between Velocity 
and Magnetic Fields 

A point of considerable physical interest is the 
partition of turbulent energy between the mechanical 
and magnetic modes. Figure 5 shows b,b,/(pLom<) 
and E / p 0 &  plotted against B*,. For the two higher 
values of upov, the curves approach one for large 
values of time or of B,. On the other hand, for 
ap,p = the ratios are essentially 0 for values 
of B*, up to 130 x lo3. For the higher values of 
upov, appreciable turbulent energy remains in the 
fluid when equipartition of energy is approached, 
but for apov = the turbulent energy is damped 
out, by the mean magnetic field wit,hout approaching 
equipartition (see Figs. 2 and 5 ) .  The small amount 
of fluctuating magnetic energy in this case can be 
thought of as due to the fact that the mean mag- 
netic lines of force are not pulled about by the 
vclocity field except for fluids of very high coii- 
ductivity (high apov).  

The tendency of the energy to approach equi- 

- 

- -  
b: / ( P O P  ":, 

10-7 
I I I I I I I I 

0 20 40 60 80 100 120 140 160 180 

6; = I I - t,l"* E 3 / 1  Po p )I" 

FIG. 5.  Ratio of turbulent energy in magnetic mode to that 
in mechanical mode. 

partition can be explained with the aid of Eys. (37)  
to (39). The second term in Eq. (38) will produce 
a positive contribution to the change in the transfer 
term when the mechanical energy is greater than the 
magnetic energy and vice versa. Reference to Eqs. 
(37)  and (39) then shows that its effect will be to 
produce equality of energy in the mechanical and 
rnagiictic modes. For ap,v = 2,  the ratio of magnetic 
to mechanical energy becomes greater than 1 before 
leveling off a t  unity. This evidently can occur be- 
cause the dissipation rate for mechanical energy is 

It might be emphasized that the present results 
concerning the equipartition of energy are for a 
weak turbulence in which triple correlations are 
negligible. However, regardless of the effect which 
triple correlations may have oil the partition of 
energy, the terms in Eqs. (37) to (39) which teiid 
to produce equipartition will still be present if a 
niean magnetic field is imposed. In connection with 
the triple correlatioiis, it is of interest that they will 
not arise because of the interaction of the magnetic 
and velocity fields if those correlations are initially 
absent. For if we construct three point equations 
for the triple correlations from Eqs. (14) and (13) 
by multiplying them through by velocity or mag- 
netic field fluctuations a t  two other points, we find, 
for instance, that au,u: u:'/at = 0 if the triple and 
quadruple correlations are initially zero. (Note that 
terms such as dUIUk/a.rk are zero for homogeneous 
turbulence.) This is in contrast to the ease of the 
double correlations u,bS. Those correlations can arise 
even though initially zero, so long as is not 
initially zero [Eq. (20)]. 

It has been suggested that cosmic rays a re  caused 
by the acceleration of charged particles by wander- 
ing (or turbulent) magnetic fields in interstellar 
space.'' Inasmuch as upov is probably greater than 
one for this case, Fig. 5 indicates that the required 
turbulent magnetic field should exist if a turbulent 
velocity field and a mean magnetic field are present. 
Inasmuch as upov is probably greater than one in 
interstellar space, the energy in the turbulent mag- 
netic field should be a t  least as great as that in the 
velocity field. 

greatci. thaii that f a y  i i q y p t i c  eiicrgj- ifi that caac. 

Partition of Turbulent Energy Between 
Directional Components 

Another point of interest is the partition of the 
mechanical and magnetic energy between the di- 
rectional components. Values of &'(+u,ui) and of 

11 E. Fermi, Phys. Rev. 75, 1169 (1949). 
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FIG. 6 .  Ratio of component of turbulent mechanical energy 
in direction of mean magnetic field to  average directional 
componcnt. 
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b i / ( fb ,b , )  are plotted against B*, in Figs. 6 and 7. 
A value of one on the ordinates of these curves 
indicates that the three directional components of 
the mechanical and the magnetic energy are equal, 
inasmuch as 2 = 2 and i: = E from symmetry 
considerations. The curves indicate considerable in- 
terchange between the directional components. This 
may be somewhat surprising in view of the fact that 
the pressure force terms, which are usually asso- 
ciated with the transfer between directional com- 
ponents, are absent in the present case. The inter- 
change might be attributed to a difference in the 
decay rates and in the transfer between the mag- 
netic and mechanical modes for the three directional 
components. 

For large values of B*, the curves for upov = 0.5 
and 2 approach one. Those for lower values of apov 

tend to approach 1.5 and then, except for apov = lo-' 
and decrease toward one. Equal energy can 
evidently occur in the three directional components 
because each of Eqs. (37) to (39) is identical for the 
three components. Thus, if the effects of initial 
conditions as given by Eq. (44) are negligible for 
large values of B,* the three components of the me- 
chanical and the magnetic energy could be equal, 
as shown in Figs. 6 and 7. 

20 40 60 80 100 I20 140 160 180 200x19' 
16 I I I I I 
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FIG. 7. Ratio of component of turbulent magnetic energy 
in direction of mean magnetic field to  average directional 
component. 
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CONCLUSIONS 

Turbulent energy is transferred between the me- 
chanical and magnetic modes by an interchange 
term in the spectral and correlation equations, this 
term being proportional to the mean magnetic field. 
A term in the equation of change for the interchange 
term is proportional to the difference between the 
mechanical and magnetic energy and causes energy 
to be transferred in such a direction that it tends to 
produce equipartition of energy between the me- 
chanical and magnetic modes. Multiple peaks can 
develop in the spectrum curves when the energy in 
the mechanical and magnetic modes is of the same 
order of magnitude. When the kinematic viscosity 
is much less than the electrical resistivity (or mag- 
netic diffusivity) as for liquid metals, most of the 
energy transferred out, of the mechanical mode is 
dissipated immediately by electrical resistance. Thus 
very little energy resides in the magnetic mode, and 
the interchange term, in this case, is ineffective in 
producing equipartition of energy. Except for very 
low ratios of kinematic viscosity to electrical re- 
sistivity, the turbulent energy in the velocity and 
magnetic fields tends to be equally divided between 
the directional components for large values of time 
or of mean magnetic field. 
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